If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x+10=8
We move all terms to the left:
x^2+12x+10-(8)=0
We add all the numbers together, and all the variables
x^2+12x+2=0
a = 1; b = 12; c = +2;
Δ = b2-4ac
Δ = 122-4·1·2
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{34}}{2*1}=\frac{-12-2\sqrt{34}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{34}}{2*1}=\frac{-12+2\sqrt{34}}{2} $
| 3x-4/2=4x-6 | | 6=2(y+2)6=2 | | (-4x+8)+4=-5(x+3) | | (x+50)=6x | | 8b+32=8(b+4) | | 4x+3/3=2x+1 | | 12x+6-6x+6=30 | | 25=y20 | | 14c+15c+-19c+16c+c=10 | | 3•2/18+4r-(4^2/9+7-1)=r+( | | -10+5p=9p+6 | | 161=7(2-7x) | | 14c+15c+–19c+–16c+c=10 | | 4x+13=(17)+(x+16) | | 58=-3x-2 | | 2x/5-6=20 | | X+9x-22=0 | | s+4=-12 | | -9+10c+9c=5+5c | | −8p+4=12−7p | | 9h+-h+-4=-12 | | 0.45a+39.99=0.40a+44.99 | | (3x+3)=(10x+4) | | 1/2(x+2)=2/3(x-4) | | 10x-4+3x+10=13x+6 | | 12+5n=8 | | -6(x-5)=2x-50+2x | | 7v+10=-81 | | 7+2n=n+2 | | -8k+6=-10k-10 | | 12-3(6a-4)=96 | | 4(3x-2)=-6 |